Biodata Maker

जैविक ईंधन आपूर्ति श्रृंखला के अध्ययन में शोधकर्ता कर रहे हैं मशीन लर्निंग का उपयोग

Webdunia
शुक्रवार, 3 जुलाई 2020 (16:10 IST)
उमाशंकर मिश्र, 

नई दिल्ली, जीवाश्म ईंधन के घटते भंडार और इसके उपयोग से होने वाले प्रदूषण से जुड़ी चिंताओं ने दुनिया को वैकल्पिक ईंधन की खोज तेज करने के लिए प्रेरित किया है।

जीवाश्म ईंधन के स्थान पर जैविक ईंधन के उपयोग की इस बढ़ती आवश्यकता को देखते हुए भारतीय प्रौद्योगिकी संस्थान (आईआईटी) हैदराबाद के शोधकर्ता कृत्रिम बुद्धिमत्ता (Artificial Intelligence) आधारित ऐसी कम्प्यूटेशनल विधियों का उपयोग कर रहे हैं जो देश के ईंधन क्षेत्र में जैव ईंधन को शामिल करने से जुड़े कारकों और बाधाओं को समझने में मददगार हो सकती हैं।

आईआईटी हैदराबाद के शोधकर्ताओं द्वारा किए जा रहे इस कार्य की एक विशेषता यह है कि इसके ढांचे में केवल जैविक ईंधन की बिक्री को राजस्व सृजन का आधार नहीं माना गया है, बल्कि इसके अंतर्गत पूरी परियोजना के चक्र में ग्रीनहाउस गैसों के उत्सर्जन में कटौती के माध्यम से कार्बन क्रेडिट को भी शामिल किया गया है। यह अध्ययन शोध पत्रिका क्लीनर प्रोडक्शन में प्रकाशित किया गया है।

शोधकर्ताओं द्वारा विकसित मॉडल से पता चला है कि मुख्यधारा के ईंधन उपयोग में बायो-एथेनॉल क्षेत्र को शामिल करने पर उत्पादन पर सबसे अधिक 43 प्रतिशत खर्च का आकलन किया गया है। जबकि, आयात पर 25 प्रतिशत, परिवहन पर 17 प्रतिशत, ढांचागत संसाधनों पर 15 प्रतिशत और इन्वेंटरी पर 0.43 प्रतिशत खर्च का आकलन किया गया है। इस मॉडल ने यह भी दिखाया है कि अनुमानित मांग को पूरा करने के लिए कुल क्षमता के कम से कम 40 प्रतिशत तक फीड उपलब्धता की आवश्यकता है।

आईआईटी हैदराबाद के केमिकल इंजीनियरिंग विभाग के प्रमुख शोधकर्ता डॉ किसलय मित्रा ने कहा है, ‘भारत में, गैर-खाद्य स्रोतों से उत्पन्न जैविक ईंधन कार्बन-न्यूट्रल नवीकरणीय ऊर्जा का सबसे आशाजनक स्रोत है। इन दूसरी पीढ़ी के स्रोतों में कृषि अपशिष्ट जैसे- पुआल, घास और लकड़ी जैसे अन्य उत्पाद शामिल हैं, जो खाद्य स्रोतों को प्रभावित नहीं करते हैं’

शोधकर्ताओं की टीम ने देश के कई क्षेत्रों में जैविक ऊर्जा उत्पादन के लिए उपलब्ध विभिन्न तकनीकों पर विचार किया है। इसके साथ-साथ, शोधकर्ताओं ने आपूर्तिकर्ताओं, परिवहन, भंडारण और उत्पादन के आंकड़ों का उपयोग करके इसकी व्यवहार्यता का भी अध्ययन किया है।

इस शोध के बारे में विस्तार से बताते हुए आईआईटी हैदराबाद के रिसर्च स्कॉलर कपिल गुमटे ने कहा, ‘हम आपूर्ति श्रृंखला नेटवर्क को समझने के लिए मशीन लर्निंग की तकनीक का उपयोग कर रहे हैं। मशीन लर्निंग कृत्रिम बुद्धिमत्ता की एक शाखा है, जिसमें कंप्यूटर उपलब्ध डेटा से पैटर्न को सीखता है और भविष्य के लिए सिस्टम और भविष्यवाणियों की समझ विकसित करने के लिए स्वचालित रूप से अपडेट होता है’

डॉ मित्रा ने कहा है कि ‘देशव्यापी बहुस्तरीय आपूर्ति श्रृंखला नेटवर्क पर तकनीकी-आर्थिक-पर्यावरणीय विश्लेषण और मशीन लर्निंग तकनीकों का उपयोग मांग पूर्वानुमान, आपूर्ति श्रृंखला मापदंडों में अनिश्चितता और उसके कारण परिचालन पर पड़ने वाले प्रभाव एवं दूरगामी निर्णय लेने में उपयोगी हो सकता है’ (इंडिया साइंस वायर)

सम्बंधित जानकारी

Show comments
सभी देखें

जरुर पढ़ें

द्रौपदी: 'अच्युत-गोत्र' की वह पहचान, जहां गोविंद ही एकमात्र संबंधी बन जाते हैं

प्रेम, आत्म-विलय से वैश्विक चेतना तक का महाप्रस्थान

महंगे सप्लीमेंट्स छोड़ें! किचन में छिपे हैं ये 5 'सुपरफूड्स', जो शरीर को बनाएंगे लोहे जैसा मजबूत

इन 10 तरह के लोगों से कभी उम्मीद न रखें, वरना जीवन में मिलेगा सिर्फ दुख

ब्रेन एन्यूरिज़्म: समय पर पहचान और सही इलाज से बच सकती है जान, जानें एक्सपर्ट की राय

सभी देखें

नवीनतम

यूरोप-अमेरिका के बीच बढ़ रही है अविश्वास की खाई

Guru Golwalkar Jayanti: गुरु गोलवलकर कौन थे? जानें 7 अनसुने तथ्य

जयंती विशेष: छत्रपति शिवाजी: धर्म, संस्कृति और राजनीति के अद्वितीय साम्राज्य निर्माता Chhatrapati Shivaji Maharaj

Shivaji Maharaj Essay: मराठा शासक छत्रपति शिवाजी महाराज पर उत्कृष्ट निबंध

जयंती विशेष: रामकृष्ण परमहंस क्यों प्रसिद्ध थे?

अगला लेख